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éur cover illustrates four brief dialogues
. | with MACSYMA, a computer system for algebraic
DISTRIBHTION /&Y i 223t 17 d:‘manipulation under development at Project MAC
' since 1968. The lines labeled Cl through C7
.are displays of lines typed in bu a user, and

ments to MACSYMA which include the ability to
“evaluate limits, improper integrals, and power
series expansions.

i

translated to two-dimensional format on a

typewriter-like device. The lines labeled D2
fhrough D7 are computed responses to commands.
The examples demonstrate some recent improve-
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INTRODUCTION

L il e i

In Project MAC ("Men and Computers"), about 270 persons are en-
gaged in digital computer research and development; they include faculty
members -- mainly of the Departments of Electrical Engineering and
Mathematics and of the Sloan School of Management -- staff members,
and students.

e Ty

The over-all program of Project MAC comprises the programs of 11
interacting and overlapping groups. The work of five of these will be
summarized here in order to describe the Project MAC effort in
1969-1970.

e D LT

Artificial Intelligence

The last year has seen significant advances in analysis of visual scenes
and visually controlled manipulation of objects by computer, in machine !
understanding of natural language and narrative, and in a broad effort

to incorporate knowledge and intelligence into programs. In these areas,
which we group under the rubric "Artificial Intelligence", Professors . ¥
Robert R. Fenichel, Michael J. Fischer, Marvin L, Minsky, Seymour A.
Papert, Michael S. Patterson, Joseph Weizenbaum, and Patrick H. Winston
and Visiting Professor Edward Fredkin have conducted research with
approximately 60 staff members and students.

Into a2 new programming language and system, PLANNER, Carl E. Hewitt
has incorporated an array of features that promise to be as basic to
heuristic programming as have been the "DO Loops" of FORTRAN and
the "FOR Statements" of ALGOL to numerical programming. In PLANNER
one can write, for example, "Whenever X happens, do Y", where X is a J g
general description of an event and Y is almost any action at all, For §
example, one can tell PLANNER to choose a simpler goal whenever ‘
three efforts to reach the old goal fail -- and PLANNER will set up a N
process ("demon") that keeps an eye open for trios of failures and, C
whenever it sees one, initiates the reselection process.

{

Terry A. Winograd completed a system of programs that translates a
wide range of statements from English into the PLANNER language.
Winograd's system is based on a heuristic grammar that uses con-
textual information; his system handles the semantic and syntactic parts
of the analysis concurrently. An important feature, which gives'the sys-
tem more flexibility than is afforded either by "semantic networks" or
by lists of grammatical rules, is the representation of the grammar as
a set of programs. The definition of a word is also a program -- as,
indeed, is each component of the system's "knowledge of the world". -
All such programs are available to the deductive part of the system.

The interests of the Artificial Intelligence Group embrace human as
well as machine intelligence. The last year pressed home the essential

!

.  Preceding page blank




_ braic manipulation system, With this new system, Mathlab is able to

. FACTOR (X**G 1) '

If at another point an expression stands as.

INTRODUCTION ' g S

. ! '
i g |

pert1nence to human teaching and learmng of basic concepts developed
or clarified through research on artificial intelligence, and Professors
Minsky and Papert and some of their cclleagues determined to explolt : J
the breakthrough into the realm of human cognition, In April 1970, | i (
Professor Papert gave a Saturday lecture on this subject to a capaclty
audience at M.LT., and he and Professor Minsky part1c1pated in a dis--
cussion with visiting leaders m the field, In June, the National Science
Foundation provided initial funds for research miteachlng and learning.

' Computer-Based Mathematics Laboratory - ' 1

1

Continuing the development of "Mathlab", a system of computer pro-

grams designed to prov1de sophisticated assistance to people working

on mathematical problems that involve complex symbolic expressions, ‘
Professors William -A. Martin and Joel Moses implemented a new alge- r

give strong assistance in work with summatlons integrals, derivatives,
exponentlals logarlthms and factorials. If, for example, at point C14

i

in a certam calculation the user types to Mathlab ' :

{

and then presses the @ key to tell Mathlab to go, Mathlab at once '
d1sp1ays ,

(D14) X + 1)(X - 1)(X + X + 1)(X - X+ 1)

(D20, '3"2*"’6 - S
6X +9X ‘

the user can have it "ratlonally s1mp11f1ed" by typing

RATSIMP (10)@ ,

where % means "it" or "the preceding expression"'. ‘Mathlab then re-
sponds with | ’

i {

X-2 ’

x2+3X | ,

1

(D21)

i

When given (e’2x + 2e" + 1) - 210g(e + 1), Mathlab s1mp11f1es it to zero
{ { '

Computatlon Structures

Human mathematicians are of course superior to Mathlab in intuition,

in dec1d1ng what manipulations to try in order to reach a goal How-
ever, a su1tab1y programmed computer can handle, much more rapldly
and accurately than any human mathematician, algebraic manipulations
involving dozens or hundreds of terms. Thus, the human and computer |
capabilities complement each other. Even though the development of

{
'

1
|




INTRODUCTION

Mathlab is far from complete, it proved itself, this past year, to be a

very helpful assistant in serious mathematical work. During the coming

year, its capabilities will be further increased.

- Computation Structures

In research on "computation structures", a group of 13 staff members
and students led by Professor Jack B. Dennis worked toward a formal

‘integration of hardware and software concepts, especially of concepts

pertaining to highly parallel, asynchronous computer systems. Their

‘work dealt with design, architecture, specification and modeling of

digital systems, with representation of concurrent processes, and with
security, privacy, and controlled sharing of procedures and data.

One of the tools that most facilitates thinking about complex concurrent
processes ic a diagram called the Petri net. Suhas S. Patil generalized
Petri nets, as modified by Holt, to handle coordination of asynchronous
events and has showed that Petri nets can be systematically converted
into asynchronous modular structures. In turn, Professor Dennis showed
that Patil's generalized nets are suitable for representing the control of
very large computers. Asynchronous design of a machine, similar in
many ways to the synchronous CDC 6600 but simpler in detail, required
only nine types of control module. For such a machine, asynchronous
design has important advantages in conceptual simplicity and perhaps
also in speed.

Attempting to understand a large and complex digital system, a person
examines it one part at a time and then, actually or conceptually, puts
the parts and their behaviors together. Suppose that each part turns

out to be determinate in the sense that all runs of any program (that
will run in it) yield the same result. Is the over-all system necessarily
determinate? This last year, Patil showed that it is, given an appro-
priate input-output discipline, which he defined. He showed that a class
of Petri nets called "marked graphs" has the determinacy-preserving
property.

Prakash Hebalkar carried out a study of restrictions of concurrent
activities that are imposed by limitation of resources -- an ubiquitous
problem (encountered in transportation, manufacturing, maintenance, etc.)
that is of great interest in the field of computation. With the aid of a
very useful representation called "demand graphs", he developed a

‘fundamental understanding of the phenomenon of deadlock, in which

would-be concurrent processes block one another by hoarding resources,
and of the safeness algorithm used in efforts to anticipate and avoid
deadlock.

Other research carried out by the Computation Structures Group in-
cludes an analysis of hierarchical associative memories, the develop-
ment of schemata ("computational schemata") for modeling the structure




INTRODUCTION l
1
of computer programs, and the beginning of the definition of a very |
basic and general programming language, intermediate between such a S

language as ALGOL and the "language" of the code that is directly
executable by computer hardware., In June at Woods Hole, Massachu-
setts, the Computation Structures Group held a conference, attended by
27 research workers from more than a dozen laboratories, on "Con-
current Systems and Parallel Computation”.

Computer System Research

Under the leadership of Professor Fernando J. Corbaté, Professor
Jerome H. Saltzer and Robert C. Daley and in close cooperation with
a group in the General Electric Company headed by Charles T. Clingen,
the Computer System Research Group of Project MAC brought the
Multiplexed Information and Computing Service (Multics) System -- the
advanced and comprehensive time-sharing system on which Project
MAC has focused a large part of its total effort since 1965 -- into
successful operation. On 1 October 1969, Project MAC transferred
operational control of the Multics System to the M.I.T. Information
Processing Center under an arrangement that leaves Project MAC in
charge of continued development of the operating system and of re-
search on computer-utility and computer-network aspects of Multics.

Although Multics is a much more complex and sophisticated system
than its predecessor, the Compatible Time Sharing System, which was i :
the first large general-purpose multi-access computer system, Multics ti
was able in Fall 1969 to support as many users as CTSS; and it has |
been increasing steadily in number of simultaneous users and in ratio
of performance to cost ever since it reached its initial operating capa- |
bility. The number of registered users of Multics has increased quite '
linearly from 26 projects and 190 individuals in October to 72 projects
and 408 individuals in June, and it now seems quite probable that
Multics will meet the initial design expectations, which seemed radical ‘

when they were published in 1965, in respect of performance and use.

In retrospect, it appears that one of the best decisions of the Multics
project was to program the operating system in a high-level program-
ming language. That decision represented a break with the tradition of
system programming in "assembler language". Using a high-level lan-
guage made it possible to revise the program repeatedly, some parts
as many as seven times, and to make progress despite "usually high"
turnover in the staff. These two factors far outweighed the advantage
(perhaps a factor of two, over-all) that could have been achieved
through the more efficient coding possible in assembler language --
and, in any event, that advantage remains open, to be exploited, if it
should seem worthwhile, when no further fundamental revisions of the
operating system are envisaged.




INTRODUCTION

Over the long development period, there were times when it seemed
that the main objective of the Multics project was simply to complete
Multics. During the last year, however, it was possible to devote time
and energy to the earlier-conceived and more-basic purpose: to under-
stand how to systematize and optimize the myriad factors and forces
that interact with one another in a comprehensive multi-access informa-
tion and computing system. Marked progress was made toward that
goal. It was possible to make sense out of about a dozen technical
puzzles. Each gain in vnderstanding reflected itself at once in improved
system performance and, at the same time, added a significant element
to the body of knowledge of computer system design.

Toward the end of the year, some of the interests and energies of the
Computer System Research Group turned to problems of graphical dis-
play and to Multics as a node in a multi-computer network, Those
topics will figure strongly in research during the coming year.

Programming Linguistics

Professors Robert M. Graham, Arthur Evans, Jr., and John J. Donovan,
Visiting Professor Michael A. Harrison, and a group of 38 staff mem-
bers and students conducted research in the linguistics of computer
programs. Much of this research is aimed at understanding program-
ming languages in terms of formalisms similar to those of logic and
mathematics., Because¢ computer programming languages are simpler,
have more definite purposes, are more likely to be deliberately de-
signed, and are more susceptible to measurement and analysis than
natural languages, there is some chance of understanding them formally,
in due course, and dealing with them as quasi-mathematical objects
rather than (as is now approximately the case) as cooking recipes or
instructions for assembling hi-fi kits, The practical advantages to be
gained through formal mastery of the language of computers are very
great. If it were possible, for example, to state precisely what a com-
puter program is intended to do and then formally -- through a definite
sequence of operations similar to those used in proving theorems -- to
show that it does or does not do it, then one of the main sources of
trouble in the use of computers could be eliminated. As matters stand
now, about all one can do to test a program is to check in a few specific
(and usually oversimple) cases that, step-by-step, it performs the opera-
tions its programmer specified and, at the end, yields output considered
correct on the basis of external criteria. That procedure is so obvious-
ly unsatisfactory as to provide strong motivation for more formal
"theorem-proving" approaches, almost no matter how difficult they ap-
pear to be. At the same time, it is evident that work in formal pro-
gramming linguistics is intellectually attractive and self-motivating,

Professor Donovan and his associates developed a mathematico-linguistic
formalism called "Canonic Systems" within which one can specify the
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syntaxes of computer languages and the rules for translating from one
computer language (e.g., a compiler langvage) to another (e.g., an as-
sembler language). They were successful, though as yet only in a sim-
plified case, in preparing programs capable, given the syntaxes and the
rules, of carrying out the translation automatically; and they made
progress toward specifying the complexity of the translation process
for various language pairs in terms of the number of steps theoreti-
cally required.

Professor Evans and his associates studied methods of formalization
that appear promising from the points of view of language description
and language extension. They found several ways to improve the defi-
nition of programming languages, which currently are described in
manuals full of rather jargonistic natural language plus syntactic "re-
write rules". They also found several ways to let the user of an "ex-
tensible" programming language specify extensions that, for some
special purpose, he would like to make to its general--purpose base
language. As tools in the study of formalization, the group used the
languages PAL and BCPL. It brought the formalization and documenta-
tion of PAL, which was designed especially for pedagogical purposes,
near to completion, and it improved the performance and expanded the
library of BCPL in Multics, produced a computer-based version of
the BCPL Reference Manual, and "exported" tapes of BCPL to 16
System 360 installations.

Other Research Programs

The five programs touched upon in the foregoing paragraphs subsume
about two-thirds of the research program of Project MAC, It will have
to suffice merely to mention the rest in this ‘summary.

Professors Frederick C. Hennie, C. L. Liu, and Albert R. Meyer and
nine associates continued research in the theory of automata, advancing
the understanding of the complexity of computations and the structure
of automata. They proved two new theorems about complexity, clarified
the concept of randomness as applied to particular sequences, extended
findings of Minsky and Papert to additional varieties of perceptron, and
obtained new results in graph theory, algebraic coding theory, integer
programming, and extensible languages,

Professors Malcolm M. Jones, G. Anthony Gorry, and Michael S. Scott-
Morton conducted research in management application of computers,
With Professors Daniel Roos and James D. Bruce, Dr. Myer M. Kessler,
and a distributed group of about 20 staff members and students, Profes-
sor Jones conducted a program of studies on interactive problem-solving
and decision-making and continued the development of the simulation
system SIMPLE; and he and Robert Goldstein carried on the develop-
ment of the Advanced Information Management System, MacAIMS.
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Professor Michael L. Dertouzos and several associates in the Electronic
Systems Laboratory, functioning as a research group of Project MAC,
conducted studies of an essentially new kind of computer, a computer
made of components that are in one respect digital and another analog.
It seems possible that such a computer can solve certain classes of
problems more rapidly than ordinary digital computers and more ac-
curately than ordinary analog computers.

Professor Robert M. Fano has long been concerned about the possible
and actual impacts upon society and, especially, with the question of
how to make computers serve individuals (as distinguished from or-
ganizations), Since he retired from the Directorship of Project MAC
two years ago, he and several students have studied impact-related
issues intensively, Professor Fano's article, "Computers in Human
Society -- for Good or I1?" in the Technology Review of March 1970,
summarizes some of their thinking,

The Dynamic Modeling Group, formed at the beginning of the year to
develop techniques and an interactive computer system to facilitate the
formulation and testing of ideas in terms of computer-program models,
acquired as a foundation for its system a Digital Equipment Corpora-
tion PDP-6/10 computer and the very sophisticated and responsive
time-sharing software developed since 1965 by members of the Arti-
ficial Intelligence Group. By the end of the year, the most essential
subsystems of the dynamic modeling system were operating, and a
major part of the effort was shifting from "basic system programming"
to the development of the programs with which users of the system
will directly interact,

In the areas of Computer Networks and Computer Graphics, the past
year's efforts were mainly groundwork. The Interface Message Proces-
sor that will connect Multics and one or both of the PDP-6/10 com-
puter systems to a coast-to-coast network of research computers was
installed, and an advanced display subsystem was incorporated into the
dynamic¢ modeling computer system. At the end of the year, the net-
work and graphics programs were shifting into high gear.

Student Participation

During the past year, the number of undergraduate student members of
Project MAC increased from approximately 25 to 76, This increase
was due partly to a deliberate effort, championed by David Burmaster,
Assistant Director for Student Activities, and partly to the successful
initiation of M.L.T.'s Undergraduate Research Opportunities Program,
under the direction of Dr. Margaret MacVicar. The number of graduate
student members of Project MAC increased, during the year, from 25
to 40,
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Administration

In September, Miss R. Joyce Harman joined Project MAC as Assistant
to the Director. During the year, Miss Harman greatly improved the
operation of the Document Room and Publications Office,

Financial Support

During the past year, the core program of Project MAC and the Arti-
ficial Intelligence Group were supported, as heretofore, by the Informa-
tion Processing Techniques Directorate of the Advanced Research
Projects Agency (ARPA). Individual projects were funded by several
other agencies: research in visual perception and in extensible lan-
guages, National Aeronautics and Space Administration; interactive
problem-solving and decision-making, Office of Naval Research; library-
information networks, Lister Hill National Center for Biomedical Com-
munication of the National Library of Medicine; dynamic modeling,
Behavioral Sciences Directorate of ARPA; programming generality,
National Science Foundation.
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I. INTRODUCTION

Research in the Computation Structures Group has the objective of ad-
vancing knowledge and understanding of computer system organization
through abstraction and analysis. Our activities have led us to some
interesting ideas regarding appropriate directions for the evolution of
general-purpose computer hardware. Much of our current activity ex-
nlores the implications of these ideas concerning computer system
organization. Areas under study include: the theory and practice of
asynchronous systems; concurrency in computation -- its influence on
computer structure and on the representation of algorithms; the con-
cept of "programming generality" -- the property of a computer system
that would permit unrestricted combination of independently written pro-
grams; the controlled access to programs and data bases; and an ap-
proach to formal semantics for programs based on an abstract model
for information structures.

The past year has seen major advances in our understanding of modular
asynchronous systems and the intimate relation of modular control
structures to the Petri nets studied by Anatol Holt. We have found our
knowledge of asynchronous systems sufficient to yield elegant and readi-
ly understood implementations of the control mechanisms of complex
central processors. We have analyzed aspects of the concept of a
hierarchical associative memory. Our understanding of the properties
of uninterpreted schemes of programs has been improved through

study of graphs that explicitly show data dependence. Finally, we have
studied formal models of two aspects of advanced operating systems --
the controlled sharing of information, and the avoidance of deadlocks
arising from resource sharing.

II. MODULAR ASYNCHRONOUS SYSTEMS

By "system" we mean an arrangement of parts that interact with one
another by means of discrete signals. The essence of systems is ac-
tivity: The parts of a system act at instants in consequence of earlier
actions by other parts of the system. Most systems have many parts
that act without immediate intercommunication. Such independent parts
that may act simultaneously are said to have concurrent activity. Man-
machine interaction involves concurrent activity of the man and the
computer; a digital system operates through the concurrent activity of
its individual circuits. The importance of concurrency goes far beyond
the use of parallel actions to attain greater speed. A large system is
usually constructed through interconnection of simpler systems which
often operate without central control. The component systems must
interact to make their presence felt and this interaction is inherently
a concurrent activity, We shall review some aspects of our current

> Preceding page blank
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work on the representation of concurrent activity and the implementation
of systems in the form of asynchronous modular hardware structures,

Consider what happens when a typewriter key is pressed. The type bar
is initially idle, When the key is operated, the type bar starts moving
toward the carriage; when it hits the paper, it starts to retreat and at
the same time the carriage starts to advance. The key can be operated
again only after the mechanism has returned to the idle condition, that
is, the motion of the carriage has stopped and the type bar has returned
to rest. This activity may be represented by a diagram called a

Petri net;

carriage is
. type bar advancing
key is hits the
type bar
operated is moving Paper

a place

a transition >'—.. s

returning

idle

The circles are called places and the solid bars are called transitions.
The places are associated with conditions and the transitions with
events. The condition associated with a place is said to hold when
there is a token (sometimes called a marker or stone) at the place,

A transition is enabled if all its input places have tokens, An enabled

In Petri nets, a place may be an input place of more than one tran-
sition. The situation where two transitions are active, but have one
input place in common, is called a conflict because the transitions are
in conflict over the token at the shared place. Only one of the tran-
sitions may fire even though both are active. Such a situation arises
in a typewriter which does not permit more than one key to be oper-
ated at the same time. The Petri net below illustrates this situation.

14
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In this figure, transitions t , ..., tk are in conflict over the place P,
and the conflict at this place prevents two or more keys from being
operated concurrently.

Petri nets are a scheme for representing concurrent systems adopted
by Anatol Holt of Applied Data Research [1] from the nets originally
proposed by Carl Adam Petri of the University of Bonn [2]. In the
Computation Structures Group, Suhas Patil has developed a generaliza-
tion of Petri nets that simplifies the representation of interactions
associated with resource sharing [3]; Jack Dennis has investigated the
use of Petri nets to represent the control structures of a highly paral-
lel computer processing unit [4]; and we have studied the implementa-
tion of nets in the form of asynchronous modular structures. A few
aspects of these investigations are discussed briefly in the following
paragraphs.

Marked graphs constitute a subclass of Petri nets in which each place
is an input place of exactly one transition and an output place of exact-
ly one transition. The net describing the operation of one key of a
typewriter is a marked graph. Marked graphs have many important
properties, and there is a direct correspondence between marked graphs
and elementary control structures for digital systems built by the in-
terconnection of a set of primitive asynchronous control modules to be
introduced shortly. This correspondence is useful in two ways: A com-
puter control unit specified as a marked graph can be translated into
an asynchronous control structure by a clerical procedure; and a con-
trol structure may be converted into a marked graph to facilitate
analysis.

Since a place in a marked graph has only one incident arc and only
one emergent arc, the circles representing the places are usually
omitted -- an arc from one transition tc another is understood to have

15
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a place on it. Further conciseness is obtained by drawing the tran- , . <
sitions as solid dots. In this simplified form, the marked graph de-
scribing the operation of a typewriter becomes: : ‘

type bar hits
the paper

° ° idle condition _ B .

\\_.____/. is reached

key is
operated

In the new notation, the presence of tokens is indicated by placing -
markers on the arcs -- hence the name "marked graphs".

An important question about a marked graph is whether its activity - ’
continues forever or comes to a halt. The property of representing
activity that goes on indefinitely is called liveress. A net is said to

be live for some initial marking if, after any arbitrary activity has

passed, a continuation of activity is possible that will fire any chosen ' '
transition. In other words, in a live net no transition is ever crossed ’
off the list of transitions that may be called upon to fire. In general,

it is difficult to determine whether an arbitrary Petri net is live. . Yet _,
marked graphs have the nice property that a marked graph is live if ;

and only if cutting the marked edges of the graph leaves an acyclic

graph. The marked graph shown below is live.

a live marked graph 3

The reader can check that, if any of the markers are removed, the . i
activity of the graph will come to a halt. This property of marked

graphs is very useful in determining whether an elementary control ,
structure is free of hang-ups. . ' !

An elementary control structure is a digital system consisting of S it
models of six types interconnected by directed links. Each link is :
able to transmit ready signals in the forward direction and acknowledge
signals in the reverse direction, By associating two arcs with each
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link of a module, the behavior of each module type may be specified |

by a marked graph fragment as follows:
' l {
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. r , : | e Sty |
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e e 0 ol ! i
2 a | o ~™T™ al | @
-t @t o e 4

I | o L_‘__I___l

i -
sequence module o trigger module
. . i - N ! '

’ t
i

The arrival of a token on an arc in the marked graph corresponds to
the transmission of a ready or acknowledge signal between two modules.
A wye module, for example, sends a ready signal over the two emer-
gent 1t links when a ready signal is received on the incident link. Then,
when acknowledge s1gna1s have been returned, an acknowledge s1gna1 is

returned over the incident link. i

Thus a wye module coutrols the concurrent executlon of two independent
operatlons. The sequencé module controls the sequential execution of
two operations. The junction module permits an action to take place
only when the comunctlon of two conditions becomes true. The contrcl
‘structure shown on the next page causes concurrent execution of ac-
tivities fI and f2 and causes act1v1tj £y to occur only when f, and f

- have completed. The operators £ f ’ and f are represented by smk
‘modules, and a source module 1s 1nc1uded so that the control' structure

will have unceasing activity. The corresponding marked graph was
found by substituting for control modules the marked graph fragments

i "
' " I
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f, f f

/.

S
'given above, and simplifying the resulting graph by omitting certain re-

dundant nodes. Since the marked graph is live, we can conclude that
the control structure from which it was derived will not hang up.

It is also straightforward to obtain an elementary control structure
that ‘implements an arbitrary marked graph by making the following

substitutions:

{

\

I
|

o transition ® becomes

N
d

/ N\

/

becomes

:
IS
s

a marked arc

The resulting control structure is guaranteed to be hang-up free if the
given marked graph is live.

Work is continuing on the problem of obtaining control structures for
more general subclasses of Petri nets. We know, from the work of

- Suhas Patil [3], a systematic way of implementing any Petri net by an
interconnection of asynchronous modules. However, this scheme seems
unnecessarily complex, and we are studying what sets of simple primi-
tive modules are sufficient to implement several intermediate classes
of nets.

18




COMPUTATION STRUCTURES

IIl. DESCRIPTION OF A HIGH PERFORMANCE PROCESSOR

We have looked into the suitability of Petri nets and asynchronous
control structures for representing and implementing the control mech-
anisms of a high-performance processor. For this exercise, we chose
a machine similar in principle to the Control Data 6600 but simpler in
detail. The machine has several functional units that can perform
different operations concurrently. The processor is so organized that
instructions may be executed in a sequence different from their order
of appearance in the instruction stream. A mechanism Kknown as the
scoreboard controls access of the functional units to values held in
data registers so that each unit operates only when its operands are
available,

Synchronous logic design techniques were used for the 6600. Thus it
appeared to be an interesting challenge to see whether the control
mechanisms of such a machine could be conveniently implemented by
using the asynchronous modular techniques developed by the Computa-
tion Structures Group,

We divided the control problem into these parts: the instruction queue,
the instruction allocator, the scoreboard, and control circuits for the
functional units. Each was represented by a Petri net, and a control
structure was devised to have exactly the behavior represented by each
Petri net. It turned out that nine types of control modules were suf-
ficient to give reasonable implementations of all six control structures:

source wye decision
sink junction union
sequence trigger arbiter

The first six of these modules were specified earlier in terms of
marked graphs. The three remaining modules are defined by the frag-
ments of Petri nets shown on the following page.

The union module permits control of an activity from either of two
points within a control structure. The arbiter interlocks two activities
so that only one of them may be in progress at a time. The decider
module makes it possible for the control structure to effect different
activities, depending on information residing outside the control struc-
ture -- for instance, the operation code of an instruction,

The design of the scoreboard turned out to be particularly elegant, and
it seems clearly preferable to a synchronous design in regard to com-
plexity and speed. Details are given in a recent paper by Jack

Dennis [4].
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union module arbiter module

decision module

IV. DETERMINACY OF SYSTEMS

To keep the design complexity of a large system within manageable
limits, the system is generally conceived as a combination of simpler
systems. Unfortunately, even if the subsystems are known to work cor-
rectly, one cannot conclude that the interconnection of the subsystems
to form the complete system will operate as intended. Therefore, it is
important to obtain a better understanding of the problems which arise
when systems are interconnected. In this direction we have achieved
some important results concerning interconnections of determinate sys-
tems -- systems whose input-output relations are functions. A com-
puter system which gives the same results for two runs of a given
program for given data is a determinate system, a system that does
not is not determinate., In constructing a large system from simpler
determinate systems one would like to know how to ensure that the
interconnection will result in a determinate system. Suhas Patil [5]
has shown that, if the intercommunication discipline is chosen proper-
ly, any interconnection of a number of determinate systems may be
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guaranteed to be determinate. This work provides a theoretical basis
for eclementary control structures: The elementary control structures
form a class which is closed under interconnection. Moreover, since
ecach of the elementary control modules discussed earlier is deter-
minate, each member of the class of elementary control structures is
guaranteed to be a determinate system. Correspondingly, the marked
graphs form a class of determinate systems.

This work on the interconnection of systems may have significant ap-
plication to networks of computers in which one would like to ensure
correctness of a computation even though parts of it are carried out
at different installations.

V. HIERARCHICAL ASSOCJATIVE MEMORY

The use of location-independent addressing is essential in a computer
system that offers programming generality. In contemporary computer
systems, where the memory consists of several physical storage media
(solid-state, magnetic-core, drum, etc.), combinations of software and
hardware mechanisms (paging, for example) have generally been used ',
to realize location-independent addressing. Nevertheless, it is recog-
nized that these implementations suffer from gross inefficiencies in
the form of wasted processor time and poorly utilized memory space.
In 1968, we outlined a radical concept of computer organization, and
proposed the concept of a hierarchical associative memory [6].

wnmy

processor hierarchical associative memory

In such a memory system each level is arranged as an associative
memory with value fields of n bits and key fields of p bits; M, is
small and fast, MC is slow by comparison but large. Reference to an
item is made by presenting its name to the memory system. A match
is first sought in MA ; if successful, the required item has been lo-
cated and is read out or altered. If the search in MA is unsuccessful,
the key is used for a search of M., and then a search of M.. When
an item is found, it is moved to the highest level M,, possibly to-
gether with other items known likely to be required in conjunction

with it. In each level, we suggested that the age of items since their
last instance of use be used to determine which items should be moved
down in the hierarchy to maintain a suitable number of vacant locations
for newly referenced items.
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As in conventional memory Systems, an organization is desired that
permits a large throughput (average number of references completed
per unit time), In contemporary high-performance systems, high
throughput is achieved by building the memory in several modules
each of which can be performing memory accesses concurrently with
the others. In a location-addressed memory, this scheme works well
because each name (address) always designates the same location in
the same module, and action by more than one module is never re-
quired to complete a reference,

The construction of a modular assoclative memory poses some new
problems. Since an item may occupy different locations in the memory
at different times, one does not know in general which module will
contain an item when access to it is required. Unless some provision
is made for organized assignment of items to modules, an access re-
quest to a modular associative memory must be presented to each of
the modules either in Sequence or concurrently, If this is done Sequen-
tially, an average of half the modules will have to be interrogated
before the item is found. If the item is not present in this level of

the memory hierarchy, all modules must be interrogated before this
fact is known. If all modules are interrogated concurrently, each one
will be activated whether or not the item is present in the level, but
the average time required to complete an access may be less. In
either scheme, the speed advantage of using a modular memory is lost,

Jeffrey Gertz has investigated two alternate schemes for avoiding the
necessity of searching all modules [7]. Both schemes assign each
item to a specific module according to some readily tested property
of the item:

(1) By ownership -- all items belonging to the same computa-

tion are assigned to the same module,

(2) By transformation -- a transformation of the key (a hash

code) determines the module to which an item is assigned.
If items are assigned to memory modules by ownership, a search of
more than one module is required only when reference is made to the
information owned by another computation. If the key includes unique
identification of an item's owner, only one module need be searched,
If the key does not indicate ownership, the module containing owned
information can be interrogated first -~ on the assumption that items
referenced are more likely to be owned items than shared items. The
use of this scheme implies there are many more active computations
than modules because it is unreasonable to expect one module to exact-
ly fit the memory requirement of any one computation,

The assignment of items to modules according to a hash code of their
keys is attractive where one expects most information to be shared
among active computations. Only one interrogation is required to lo-
cate an item or to find that it must be retrieved from a lower level,
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However, if an item may be referenced by two distinct keys, either the
item would have to be duplicatcd in two modules, or all modules would
have to be interrogated to effect reference by one of the two keys.

VI. BASE LANGUAGE RESEARCH

During the past year, work has begun toward the definition of a base
program language. We think of the base language as a representa-
tion scheme for programs intermediate between source programming
languages such as Algol and Snobol, and a machine-level representation.
In its design, we hope to achieve three goals: to create a general-
purpose language that is entirely consistent with the requirements of
programming generality, to find a representation that expresses all
possibilities for concurrent execution of parts of algorithms; and to
obtain a language that can be used as a functional specification for an
advanced highly parallel computer design.

We have made major gains in our understanding of the properties of
certain mathematical models of the structure of programs; we call
these models computation schemata. Our theoretical work with compu-
tation schemata has so far been restricted to computations that operate
on simple variables -- variables whose structure as a collection of
simpler entities is not relevant to the scheme (the flowchart) of the
computation. Yet it is important to thoroughly understand this subject
as a basis for building a more general theory for programs that oper-
ate on structured data.

VII. COMPUTATION SCHEMATA

Our work on computation schemata has evolved from the thesis research
done by Van Horn [8], Rodriguez [9], Luconi [10], and Slutz [11] at
Project MAC, and has been considerably influenced by the original
studies of Yanov [12] and, more recently, the work of Karp and Miller
[13], and the work of Paterson [14]. Two questions have been of
greatest interest to us: What sort of constraints must be met in the
representation of parallel computations so that unique results of com-
putations may be guaranteed? Under what conditions is it possible to
determine whether two representations (schemata) describe identical
classes of computations? For the class of schemata we have considered,
we now have satisfactory answers to the first question, and have gained
a better understanding of the second.

A computation schema represents the manner in which functional ele-
ments and decision elements are interconnected, and their action
sequenced, to define an algorithm. The functional elements of a schema
are called operators: Each operator a evaluates some unspecified func-
tion of an m-tuple of input variables and assigns values to an n-tuple
of output variables.
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input cells output cells

gla): {m-tuples} — {n-tuples}

The unspecified function associated with an operator 7 is denoted by
g(a). The decision elements of 2 schema are called deciders: Each
decider d tests some unspecified predicate p(d) for an m-tuple of
input variables.

input cells

d
@ p(d): {m-tuples} — {true, false}

A computation schema has two parts -- a data flow graph and a
control. The data flow graph defines the interconnections through which
results of each operator application are passed on as arguments for
further transformations and tests. The variables of a schema are
represented in the data flow graph by boxes called cells. There is
also a circle for each operator and a diamond for each decider.
Directed arcs join the operators to their output cells and represent
the connections to each ope-ctor and decider from its input cells.

The cells of the schema are identified by the letters m, My, ....
Certain cells are designated as input or output cells. Values are as-
signed to the inpui cells before a computation begins; upon completion,
the result is the set of values present in the output cells. Several
operators, a and b, say, may have the same assuciated function letter:
g(a) = g(b). In this way, a schema may require that two operators, a
and b, alwayz implement the same transformation, although the par-
ticular transformation is unspecified. Similarly, each decider designates
a predicate letter p(d). The function letters and predicate letters of a
schema make up two finite sets G and P.

The control of a computation schema is a specification of the order in
which the operators and deciders of the data flow graph are permitted
to act. In particular, the control indicates how further progress of
computations is affected by the actions of the deciders. For the ex-
amples of computation schemata given below, we shall represent the
control by precedence graphs. An example of a computation schema is
the following.
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S: data flow graph precedence graph

Each diamond node in the precedence graph connects to two subordinate
precedence graphs that specify alternative computations according to
whether the designated decider has a true or false outcome. Operator
a_ in the data flow graph is an identity operator; the associated func-
tion g(a )} is always the identity function.

For schema S the precedence graph allows just four distinct sequences
of action by the operators and deciders of the schema. These sequences
comprise the control set C of the schema

.0 ]
C: (a. a, f, a5 a, a5)

(a, a, f, a, a, a5)

(2, a, t, ag f, a5 as)

(2, a, t; ag t, a, ag) |

In these sequences, a, stands for an acfion by operator a ; f | stands
for an action by dec1<ler d, for which the outcome is false; and t,
stands for an action by dec1der d, for which the outcome is true.
Since no iteration is p-esent, the control set C, is finite,

Iteration is represented in a precedence graph by a pie-shaped node
connected to a single subordinate precedence graph.

25
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82= data fiow graph precedence graph

begin

The computation specified by the subgraph is repeated until the decider
acts with a false outcome. The control set for schema 82 is C2 :

C,: [ (a' £,) ]
(a' t, a, a, f,)
(a' t, a; a, f')
) (a' t, a, a3 t, a, a, fl) q
. . .
. . .
[ . . .
To convert a computation schema into a specificatic < particular

algorithm, it is necessary to specify the functions .nd predicates desig-
nated by the function letters in G and the predicate letters in P, Of
course, the specified functions and predicates must have domains and
raiges consistent with the topology of the data flow graph, and must

be in agreement whenever the value of a function may be the argument
of a function or predicate. Such a specification of functions and predi-
cates is called (after Yanov) an interpretation of schema,

Two properties of schemata are of particular interest to us., A schema
S is determinate if, for any interpretation of the function and predicate
letters, S determines a functional relation of output tuples to input
tuples. In order to say whether two schemata S, and S, describe the
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same computations, we must be able to relate the interpretations of
the function and predicate letters in &, and S,. For this purpose, let

G=G|UG2 P=P|UP2 .

Then S, and S, are equivalent schemata if, for any interpretation of
the functions and piedicate letters in G and P, S, and S, determine
precisely the same relation of output tuples to input tuples.

To develop insight into the questions of determinism and equivalence,
we have devised the notion of data-dependence graph or dadep graph
for short. A dadep graph of a schema sets forth separately each action
by an operator or decider. For a particular control sequence of a
schema, the final value placed in each output cell will be the result of
some cascaded composition of functions. A dadep graph is just a graph
representation of the cascade composition of operators associated with
each output cell.

Let us construct the dadep graph for schema S3 from its unique con-
trol sequence a = (aI a, az a,).

begin

The construction is shown on the next page. We start by setting down
a copy of each input cell of the schema. (The letters denoting these
cells are underlined.) Then we add a copy of an operator and its out-
put cells for each succeeding element of the control sequernice. Each
cell added to the dadep graph is labeled as in the data flow graph, and
this label is erased from the cell copy previously bearing it. In the
case of an identity operator, a second label is given to the most-recent
copy of its input cell, and no copy of the operator is made.

For schemata that include deciders, there will be a cascade composition
of functions associated with each action of a decider as well as each
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O O

(a)

(c) (d) (e)

output cell. A determinate schema with k deciders could have 2% dis- i
tinct dadep graphs -- one for each combination of decisions that might [
occur in the course of some computation. For the schema S , there : 'i

|

are just three dadep graphs because a decision of false by d, results
in the absence of any action by d2.
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In gener"al, a schefna that represents an iteration defines an infinite
set of dadep graphs. In the case of -Sz’ the three simplest dadep graphs
are:

i {

(a) (b) | (c)

! i
Certain properties are important in the study of schemata: A schema
is persistent if the occurrence of one of two actions that could proceed

" concurrently does not inhibit or block the other action. Furthermore, :

a schema is commutatlve if the order in which two ‘concurrent actions
occur has no effect on the subsequent course of the computatien,

Nondeterminate computation can occur,only when a 'schema has a cell
that could be assigned 'a value by one operator either before or after
-a value is assigned:to or read from the cell by the action of another
_operator or dec1der When this can happen wp say the schema has a

' conﬂict P ' | . !

By means of known methods it is not dlfflcult to show that any compu-

tation schema that is persistent, commutative, and free of conflict is
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guaranteed to be determinate. A more interesting problem is to deter-
mine the circumstances for which the conflict free property is a neces-

- sary condition for schemata to be determinate. We have studied two

natural restrictions on schemata such that any determinate schema
meeting the restrictions is necessarily conflict free. The first of these
restrictions amounts to requiring that each action by any operator or
decider in a schema participate in determining some output value. A
schema meeting this restriction is said to be normal., The second re-
striction disallows control sets that permit repetition of a computation
or test for the same m-tuple of input values. A schema meeting this
restriction is said to be repetition-free. In schema S4, repetition of
the function designated by g, occurs. Because of the repetition, the
conflict between operators a; and a, at cell m, fails to yield non-
determinate computations -- both dadep graphs define the same com-
position of functions.

4 ‘ dadep graphs

For an elementary schema that is well defined, normal, repetition-free
and determinate, all execution sequences yield the same dadep graph.
In fact the dadep graph is a canonical form for this class of schemata,
Thus the equivalence of any two elementary schemata can be tested by
constructing their dadep graphs.

P

i 0 i Bt

|
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In the case of a normal, repetition-free schema that has deciders but
ne iteration, the class of computations represented is described by a
finite set of dadep graphs, as shown for the schema S, earlier. Each
pair of input values will be processed as shown in that one of the
dadep graphs for which the evaluation of predicates agrees with the
truth values given at decision points of the graph.

We can construct a table of two columns, called a conditional expression
list, that characterizes the computations represented by a schema. Each
row of the table corresponds to one dadep graph. In the left-hand col-
umn, we write a conjunction of the predicates that must be satisfied by
the input variables for the corresponding dadep graph to describe the
computation. In the right-hand column, we write the compositions of
functions that specify the corresponding dependence of output values on
input values. For Sl we have:

Condition Expression

p, (x,) g5(8,(8, (x5 x,)), 8,508 &, x,)))

p,(x,)* p,(8,(x,)) | 858, (x5 X,), 8508, (x5 X))

p, (%,) * B, (8,(x,)) | 85(8,(&, (x5 X,)), & (x,, X))

Now consider the schema SS:
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Schema S5 has four dadep graphs
€xpression list with four entries:

Condition Expression

Pi0g) *B,8,05,)) | 85ty x,, x,)), g, (e, (x,, x,)))

Pi0R) « y(84,)) | (e, 8, v, x,)), (8, x,)))

P, (x,) # B, (g,(x,)) 85(8,(8, (x|, x,)), g (x,, x,))

P (x,) + p,(g,(x,)) 858, (x,, x,), g5(g, x,, x,)))

This table specifies the same

class of Computations as the conditional
expression lis* for S,, for we

have the logical equivalence

P (5) = B, (x,) « B, (g, (k) + P (%)) ¢ b, (g,(x,)) .
Thus schemata SI and S5 are equivalent,

mata may be tested for equivalence by co
€xpression lists,

In general, noniterative sche-
nstructing their conditional

Since an iterative schem

a has an infinite set of dadep graphs, its con-
ditional expression list i

S infinitely long, For schema 82 we have

Condition Expression

B, €% (x,)) g, (x,)

P, (€5(x,)) o T, (8387 (x,))) 82(x,, g (x,))

P, (€ (x,) « p, (B5(e7(x,))) B, (85 (856 (x,)))) | g,(x,, &%), g (x,)))

We can show that, in general, two normal and repetition-free schemata
are equivalent if and only if their conditional expression lists agree in
the sense illustrated by our demonstration of equivalence for S, and

S5 - When the lists are finite the existence of a decision procedure is
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clear. At this time it is not known whether or not a decision procedure
can be found for the more general equivalence problem.

VIII. CONTROLLED INFORMATION SHARING

The merit of the computer utility concept [15], lies in the ability of
the users of the utility to build on each other's work. Thus the utility
must provide orderly means for sharing access to procedures and data
bases. We believe [16] that, to be successful, a utility must provide an
environment in which a variety of information services may flourish
and compete as private enterprises. Because proprietary and personal
data will reside in the memory of a computer utility, access of users
to stored information must be controlled so that only legitimate access

is permitted.

Dean Vanderbilt has studied the implications of these requirements for
sharing and access control on the organization and representation of
procedures and data bases in a computer utility [17]. A computer utility
must allow the owner of a program to authorize its use by other users
without giving them the ability to view its internal structure. The execu-
tion of a program involves access to data and access to other programs.
This additional information falls into two categories -- information that
is associated with (shared by) all activations of the program; and the
information that is associated with a particular activation (and not
shared by several activations). The former category (Category I) con-
sists of subprograms considered to be part of the program, subprograms
of these subprograms, etc., and any data that are common to all activa-
tions of the programs. Category II information consists of all informa-
tion passed as arguments to and from the program, and all temporary
information generated during the particular activation.

During execution of a program, access to Category I and Category II
information must be provided. Two aspects must be dealt with: First,
the names used by the program to refer to this additional information
must be bound to be the correct information. Second, the access con-
trol mechanisms of the utility must allow access to the information

when it is needed.

The Category I information is known to the owner -- the creator -- of
the program, but not to the borrower. Thus the owner must specify
the binding of names in the program to that information, and ensure
that the information may be effectively referenced when needed during
execution of the program. Since the program borrower should be
granted no more access abilities than necessary, it must be possible
for the owner to give the borrower the ability to access Category I
information only in conjunction with use of the program. Thus, access
abilities and binding information must be associated with the shared
program so that the appropriate Category I information is available
each time the program is executed.
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The Category II information coasists of information supplied by the pro-
gram user and information created by the program. For the former,
the supplied arguments must be bound to the program's call parameter
names. The access abilities bose no problem since this information be-
longs to the program user. For the latter information, the process
executing the program must be allowed to create information and to
have it automatically bound to the appropriate names appearing in the
program.

Dean Vanderbilt has designed an abstract program-execution environ-
ment [17] which offers one solution to the problems of implementing

controlled access to shared information in a computer utility, This work

uses a directed graph model of structured information that is closely
related to the abstract information structures that form the foundation
of our development of a base language, and is similar to the abstract
"objects™ used by the IBM Vienna Laboratory [18] for their work in
formal semantics.

IX. RESOURCE SHARING WITHOUT DEADLOCK

Another form of concurrency is the cooperative activity of interacting
computational processes, as in a multiprocess computer system. One
form of interaction among processes is the implicit interaction arising
from the sharing of limited resources. Consider, for example, two
independent, sequential processes that progress through several distinct
phases of activity,

D,- process | process 2

@] o @ o

x

o
- |
/O

System Capacity
C=10

©@ ® @ 0
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For each of its phases (identified by the circled numbers), a process
requires the specified amount of a single resource type. The number

of available units of the resource type (the system capacity) is C = 10,
This representation of the resource requirements of a system of con-
current processes is called a demand graph. It is convenient to repre-
sent the composite state of the processes by a slice through the demand
graph. For example, in the slice y = (@, @) of demand graph D,,
both processes are engaged in phase 1 of their activity. Slice y is
feasible because the total resource units required is seven, which is
less than the system resource capacity. If process 2 should complete
phase 1, it could immediately proceed with phase 2, for the slice

y' = (Q), @) is also feasible. However, process 2 could not continue
into phase 3 of its activity because slice = (@, @) has a total
resource requirement larger than the system capacity -- we say that
slice y" is not feasible. The resource-allocation mechanism of a sys-
tem should operate so that all processes can complete all phases of
their activities, if possible, by a sequence of feasible slices. This kind
of scheduling is not simply implemented if processes are assumed to
retain control over resources during their transitions to new phases of
activity, For instance, we must allow process 2 to retain the four units
allocated to it for phase 1 while awaiting the release of three more
units for its use in phase 2. Such hoarding occurs in computer systems
where the resource may be memory areas, access to locked data bases,
tape units, etc. When such hoarding is practiced, deadlocks can occur:
Slice y' in the demand graph D, is feasible, and represents a system
state reachable by a sequence of feasible slices. Yet neither process
can proceed beyond its phase in slice y' for the lack of needed resource
units -- the two processes are deadlocked. To avoid deadlock, the
allocator must prevent the system from reaching the state correspond-
ing to slice y' even though the slice is feasible,

We call a slice y in a demand graph safe if it is feasible and there
is a sequence of phase transitions leading tc a succession of feasible
slices so that each process completes all remaining phases of its ac-
tivity. If there is no such sequence of feasible slices, then slice y is
unsafe. Slice y' in D, is unsafe. That slice y is safe is demonstrated
by showing, on the next bage, a sequence of phase transitions to suc-
cessive feasible slices that takes both processes through all remaining
phases.,

In these terms, the task of the resource allocator is to regulate the
transitions of processes to new phases so that each slice attained is
safe. It is not adequate to start the system of processes in a safe
slice, for unsafe slices may be reached from a safe slice.

For demand graph DI » We can discover that slice y is safe by observing
that process 1 goes through a phase of reduced demand during which
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D|3 process | process 2

System Capacity
C=10

process 2 may advance to phase 4. In the absence of the detailed de-
mand data given by the demand graph, this sort of reasoning cannot

be applied, and less-complete resource usage is possible. For instance,
if it is only known that brocesses 1 and 2 require maximum demands
of 7 and 9 units, respectively, the system state represented by slice y
could not be permitted to occur,

In principle, one could examine all possible slices of 3 demand graph
and determine whether each is safe before initiating any activity, How-
ever, this technique lacks flexibility, since adding a new process to 3
system of processes would require a suspension of activity while a
redetermination of safeness of slices is carried out. It is also waste-
ful in that few of the slices of a demand graph will occur during a

run of the system of processes. Incremental algorithms, which only
test for safeness slices that are candidates for becoming the new cur-
rent slice, are therefore of interest. Prakash Hebalkar [19] has formu-
lated an algorithm for testing safeness that is non-enumerative and in
which the amount of backtracking is minimal. This Safeness Algorithm
attempts to construct a Seéquence of fe